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Abstract: Grasping occluded objects in cluttered environments is an essential
component in complex robotic manipulation tasks. In this paper, we introduce
an AffordanCE-driven Next-Best-View planning policy (ACE-NBV) that tries to
find a feasible grasp for target object via continuously observing scenes from
new viewpoints. This policy is motivated by the observation that the grasp af-
fordances of an occluded object can be better-measured under the view when the
view-direction are the same as the grasp view. Specifically, our method leverages
the paradigm of novel view imagery to predict the grasps affordances under pre-
viously unobserved view, and select next observation view based on the highest
imagined grasp quality of the target object. The experimental results in simula-
tion and on a real robot demonstrate the effectiveness of the proposed affordance-
driven next-best-view planning policy. Additional results, code, and videos of real
robot experiments can be found in the supplementary materials.
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1 Introduction

When we aim to pick up an occluded object from an unstructured environment, observations from
a single perspective often fail to provide sufficient affordances information, and we spontaneously
move our heads to obtain new perspectives of the occluded object. The driving force behind the
actions that lead us to seek the next observation relies on our imagination and spatial reasoning
abilities. We know in which direction we can better interact with objects, and we will choose to
observe in this direction the next time. However, current intelligent robotic systems are not able to
perform these tasks efficiently, and a unified framework for addressing this challenge is lacking. In
this work, we aim to investigate the feasibility of endowing robots with this capability.

As shown in Fig. 1, we focus on the task of grasping a specific object in cluttered scenes by a robotic
arm with a parallel-jaw gripper. There are relatively mature approaches for predicting grasp poses
for unknown objects in cluttered scenes, and most of them first observe the entire scene from one or
more fixed viewpoints [1, 2] and predict grasps of all objects at once. However, these methods may
fail to predict a feasible grasp for a specific object due to heavy occlusions between objects. In order
to design a more stable grasp affordances prediction pipeline, some previous works [3, 4] introduced
active perception modules to observe the scene from several new selected viewpoints before execut-
ing the grasp. They all select the new observation view directions based on the information gain
of object geometry reconstruction. However, the improvement of geometry reconstruction does not
always indicate a better grasp quality.

In this paper, as shown in Fig. 1, we build on the intuition that the grasp affordances can be better-
measured using the observation when the observation view direction is the same as the grasp di-
rection. Based on this insight, we leverage the novel view imagery ability of the implicit neural
representation to predict the grasp affordances of imagined novel grasps, and set the next best ob-
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Figure 1: The task of the robotic arm is to grasp the red target object, but the view of its in-hand
camera is hindered by a cluttered scene, making it difficult to provide high-quality and collision-free
grasping pose predictions. In this study, we draw insight that the grasp affordance of occluded target
object can be well-measured when the view direction is the same as the grasp direction, and propose
a framework that plans the next observation based on the increment of grasp affordances to find a
feasible grasp on the target object.

servation view to the imagined grasp view that yields the highest gain in the grasp quality rather
than object geometry reconstruction. Specifically, we first propose a view-aware grasp affordances
prediction module to effectively exploit the target object geometry information and occlusion re-
lationships between objects for better grasp synthesis. Then, we adopt similar training paradigm
as NeRF [5] to enable our model to imagine the scene representation from previously unobserved
viewpoints. With this scene imagery ability, we predict the grasp affordances of target object under
many imagined views with proposed view-aware grasp affordances prediction module. Last, a next-
best-view planning policy is designed to continuously observe the scene from selected new views
until a feasible grasp on target object is found. In summary, the contributions of this work are as
follows:

• We propose a view-aware grasp affordances prediction module for better grasp synthesis
on an occluded target object in cluttered environments.

• We design a next-best-view planning framework that leverages the implicit neural repre-
sentation to jointly predict imagined grasp affordances under unseen views and select the
next observation view based on the grasp affordances prediction.

• We demonstrate significant improvements of our model over the state-of-the-art for the
grasp task in cluttered scenes in simulation and on a real robot.

2 Related Works

2.1 Grasp Detection

Grasping objects is one of the fundamental abilities for robotic manipulators in manipulation tasks.
In order to grasp diverse unknown objects in any environment, a robotic system must effectively
utilize the geometric information gathered from its sensors to calculate the feasible grasping poses.
Recent advances in deep learning methods have led to rapid developments in robot object grasp-
ing [6, 7, 8, 9, 10, 11, 12]. A significant portion of these methods do not require object localization
and object pose estimation, but instead perform grasp affordances prediction using end-to-end ap-
proaches [1, 13]. In particular, Dex-Net [13, 14] adopts a two-step generate-and-evaluate approach
for top-down antipodal grasping, and VGN [1] introduced a one-step approach for predicting 6-DoF
grasping configurations in cluttered environments. GIGA [2] exploits the synergistic relationships
between the grasp affordances prediction and 3D reconstruction of scenes in cluttered environments
for grasp detection. These works all take fixed single or multiple images as input [1, 2, 13, 15], and
the robustness of these methods is largely influenced by the observation camera viewpoints [16].
When dealing with complex environments with strong occlusions, many works [3, 4, 17] try to
grasp objects by dynamically moving the observation sensors to obtain additional scenes and object
geometry information.
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2.2 Next-Best-View Planning

Next-Best-View (NBV) planning, which aims to recursively plan the next observation position for
sensors, is one of the most challenging problems in active vision for robotics [18]. Compared to
the passive observation paradigm, active perception with next-best-view planning enables a more
flexible way of obtaining environment information. It has been applied in various fields, such as
object reconstruction [19, 20, 21], object recognition [22, 23], and grasp detection [3, 4, 17]. NBV
planning is typically divided into two categories: synthesis methods and search methods. Synthesis
methods directly calculate the next observation position based on current observations and task
constraints [24], with some methods [25] working within the paradigm of reinforcement learning.
On the other hand, search methods first generate a certain number of candidate viewpoints and then
select viewpoints based on human-designed criteria. Most search-based approaches use the gain of
3D geometry reconstruction as the metric to select next viewpoints [3, 4, 19]. In particular, Arruda
et al. [3] propose a next-best-view planning policy that maximizes object surface reconstruction
quality between the object and a given grasp. Breyer et al. [4] design a closed-loop next-best-view
planner based volumetric reconstruction of the target object. Recent work based on neural radiance
fields has also proposed some uncertainty-driven methods [26, 27, 28, 29, 30]. However, for grasp
tasks, evaluating viewpoints from grasp affordances is a more direct approach [17]. In this article,
we mainly explore how to use grasp affordances information for NBV planning.

3 Problem Formulation

No Yes

Plan Next View

Update Perception Compute Grasp

Execute Grasp

Stopping criteria 
satisfied?

Figure 2: Overview of the next-best-view plan-
ning policy for grasping.

We consider the same active grasp problem as
in [4]: picking up an occluded target object in
cluttered scenes using a robotic arm with an
eye-in-hand depth camera. As shown in Fig. 2,
the target object is partly visible within the ini-
tial camera view field and a 3D bounding box
is given to locate the target object. Our goal is
to design a policy that moves the robotic arm to
find a feasible grasp for the target object.

An overview of the whole system is shown in
Fig. 2. Given a cluttered scene on a tabletop and
an occluded target object T with corresponding
bounding box Tbbox, we aim to predict a feasi-
ble 6-DoF grasp G for the target object T. Specifically, at each time t, we obtain the observation
Dt and integrate it into a Truncated Signed Distance Function (TSDF) Mt. Then we predict sev-
eral possible grasps G1,G2, . . . ,GN for the target object based on current Mt. Next, we use a
stopping criterion to determine whether a feasible grasp on the target object has been found. If the
stopping criterion is satisfied, we select the grasp of G∗ with the highest predicted quality to exe-
cute. Otherwise, our proposed model computes a Next-Best-View Ot+1 and moves the robotic arm
to this viewpoint to get a new observation Dt+1 which will be integrated into Mt+1. Then, a set of
new grasps are predicted using Mt+1. This observe-predict-plan closed-loop policy is continuously
running until the stopping criterion is met.

4 Method

We now present the AffordanCE-driven Next-Best-View planning policy (ACE-NBV), a learning
framework that leverages the paradigm of novel view imagery to predict the grasp affordances for
the unseen views and achieve the closed-loop next-best-view planning according to predicted grasp
affordances. As shown in Fig. 3, our model is composed of two modules: 1) a view-aware grasp
affordances prediction module, and 2) an affordance imagery of unseen novel views module. We
discuss these two modules in Sec. 4.1 and Sec. 4.2, respectively, followed by the proposed next-
best-view planning policy in Sec. 4.3 and training details in Sec. 4.4.
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Figure 3: Architecture of the proposed ACE-NBV. The input is a TSDF voxel field M obtained from
the depth image. The upper branch predicts the grasp affordances for the target object and the lower
branch synthesizes the depth image of different views, including the previously unseen views. Both
branches share the same tri-plane feature volume C.

4.1 View-Aware Grasp Affordances Prediction

In this work, we define the grasp affordances in the form of grasp quality Gq , grasp center
Gp = (x, y, z), grasp orientation GR ∈ SO(3), and opening width Gw of the parallel-jaw grip-
per. Following the grasp pose representation in [31], we decouple the grasp orientation GR as the
grasp view Gv and in-plane rotation Gr. Because of the heavy occlusions in the cluttered scenes,
we draw insight that the grasp affordances can be better estimated using the observation whose the
view-direction Ov is the same as the grasp direction Gv. Motivated by this, we propose a novel
view-aware grasp affordances prediction module to predict the in-plane rotation Gr, grasp quality
Gq and gripper width Gw given a specific grasp center Gp and grasp direction Gv.

Specifically, given a depth image Dt ∈ RH×W captured by the depth camera on a robotic arm, we
first integrate it into a TSDF Mt ∈ R40×40×40, which represents a cubic workspace of size L and
can be incrementally updated with the new observed depth images. As shown in Fig. 3, at each time
step t, our model takes the current TSDF voxel Mt as input and processes it with a 3D CNN network
to obtain a tri-plane feature volume C ∈ Rh×w×3 as in [32], which is shared for view-aware grasp
affordances prediction and novel view depth synthesis.

For grasp affordances prediction of the occluded target object, we first uniformly sample N points
in 3D as grasp centers Gp1 ,Gp2 , ...,GpN

in the given 3D bounding box, and set the current obser-
vation view Ov to grasp view Gv. To predict grasp affordance for a specific grasp center Gp, we
cast a ray r = (Gp,Gv) from orthographic cameras [33] origins o along the direction Gv passing
through the grasp center Gp. In particular, as shown in Fig. 3, these rays are cast into the tri-plane
feature volume C and n points S = {s1, s2, ..., sn} are uniformly sampled along each ray. Then, we
query the local features Csi of these 3D points from the shared tri-plane feature volume, and these
local features are integrated together as a ray feature Cray via max pooling, i.e.,

Cray = maxpool(Cs1 ,Cs2 , ...,Csn). (1)

This ray feature captures the occlusion relationships between objects along the ray direction, which
is essential for grasp affordances prediction in cluttered scenes.

In addition, local geometry information around the grasp center is another key factor for grasp af-
fordances prediction on a target object. Therefore, as shown in Fig. 3, we draw a small 3D bounding
box along the view-direction Ov with fixed length and width around grasp center Gp. Then we
obtain the tri-plane features of the eight vertices of this cuboid Cvert1 ,Cvert2 , ...,Cvert8 and con-
catenate these features with the feature of grasp center CGp . This concatenated feature is denoted
as local geometry feature Cgeo, i.e.,

Cgeo = concat(Cvert1 ,Cvert2 , ...,Cvert8 ,CGp). (2)
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Based on the above ray feature and local geometry feature, we implement the grasp affordances
prediction module as a small fully-connected neural network fG that takes Gv,Cray,Cgeo as input
and outputs the in-plane rotation Gr, grasp quality Gq and gripper width Gw,

Gr,Gq,Gw ← fG(Gv,Cray,Cgeo). (3)

In (3), Gv is a 3-dimensional unit vector that represents the view direction, Gw ∈ [0, wmax] where
wmax is the maximum gripper width, and grasp quality Gq ∈ [0, 1].

4.2 Affordance Imagery with Implicit Neural Representation

Inspired by the impressive performance of neural radiance fields in the new view synthesis, we adopt
the same paradigm to enable our model to imagine the scene geometry from previously unobserved
viewpoints. With this scene imagery ability, our model can predict reasonable grasp affordances
under unseen viewpoints, and the imagined grasp affordances are used for the next-best-view selec-
tion. Specifically, as in Fig. 3, we share the same tri-plane feature volume C for novel view depth
synthesis and grasp affordances prediction, and the network is trained with two tasks simultaneously.

First, we build a geometry decoder upon the shared tri-plane feature volume C for novel view depth
synthesis. We implement this geometry decoder as an MLP network that takes local feature Cxyz of
a 3D point p = (x, y, z) as input and predict its signed distance function (SDF) value. Then, for a
given view direction Dv, we sample a series of 3D points along the ray and synthesize depth images
D using their corresponding SDF values, following the approach described in NeuS [34], i.e.,

D← FS(C,Dv), (4)

where FS denotes the whole network branch for novel view depth synthesis. Note that here we only
utilize depth images as supervision, which differs from the approach described in the original NeuS
paper. The optimization with (4) makes the shared tri-plane feature volume able to reason scene
geometry under unseen viewpoints, which aids us in grasping affordances imagery.

For grasp affordances imagery, we utilize the method described in (3) to predict grasps at points in
the bounding box Tbbox from given direction Gv. The model takes current feature volume C as
input and imagine a grasp affordance map for a novel view. Let FG represent the whole network
branch for grasp affordances prediction, the affordances imagery pipeline is formulated as:

G← FG(Tbbox,C,Gv). (5)

4.3 Next-Best-View Planning for Grasping

We design a closed-loop next-best-view planning policy π to determine the next observation view
which is most beneficial for grasping the target object when no feasible grasp is found. Let Gv be
a view from a set of potential next observation views Gv ⊂ SE(3). The goal of our next-best-view
planning policy is to find the next observation view Ov,t+1 with the highest predicted grasp quality
G∗

q from a set of imagined grasp affordances for the target object, i.e.,

Ov,t+1 ← argmax
Gv∈Gv

G∗
q(Tbbox,Ct,Gv). (6)

We adopt a methodology similar to that presented in [4] to generate potential next grasping views
Gv, and predict the imagined grasp affordances under these potential views with the above affor-
dances imagery module. In addition, we use two simple stopping criteria to decide whether to stop
or to continue to find the next observation view. First, the policy is terminated if the highest grasp
quality G∗

q of currently predicted grasps is above a given threshold qmax. Second, we impose a
maximum number of next-best-view planning steps Tmax. We summarize the overall next-best-view
planning policy for grasping as an algorithm in the appendix.

4.4 Training

The network is trained end-to-end using ground-truth grasps obtained through simulated trials.
To achieve generalizable grasp affordances imagery, we generate three types of input-output data
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pairs: front-observe-front-grasp, front-observe-side-grasp, and multi-observe-front-grasp. The
front-observe-front-grasp means that our model takes one front view depth image as input and
predicts grasp affordances and depth image under the same front view. Similarly, the other two
types of data pairs represent different input and prediction task pairs under different views. Note
that multi-observe means the input TSDF is fused from several depth images from different views,
aiming to construct data that closely resembles the input distribution during the reasoning process
of the closed-loop grasping. By incorporating such data pairs into the dataset, we enable the model
to predict the affordance of objects in unobserved directions, thus allowing for a more accurate
evaluation of candidate observation directions.

The training loss consists of two components: the grasp affordances prediction loss LA and the
novel view depth synthesis loss LS . For the grasp affordances prediction loss, we adopt a similar
training objective as VGN [1]:

LA(G, Ĝ) = Lq(Gq, Ĝq) + Lr(Gr, Ĝr) + Lw(Gw, Ĝw)). (7)

In (7), Ĝ represents the ground-truth grasp, and G represents the predicted grasp. The ground-truth
grasp quality is denoted by Ĝq , which takes on a value of 0 (representing failure) or 1 (representing
success). The binary cross-entropy loss between the predicted and ground-truth grasp quality is
represented by Lq . The cosine similarity between the predicted rotation Ĝr and the ground-truth
rotation Gr is denoted as Lr, while Lw represents the ℓ2-distance between the predicted gripper
width Ĝw and the ground-truth gripper width Gw. The supervision of the grasp rotation and gripper
width is only applied when the grasp is successful (i.e., Ĝq = 1).

The geometry loss is calculated using the standard ℓ1 loss between the synthesized depth image and
the actual depth image, and is denoted by LS . The final loss L is obtained by adding the affordances
loss and the geometry loss together, i.e., L = LA + LS .

5 Experiments

We evaluate the performance of our algorithm by grasping an occluded target object in simula-
tion and real-world environments. We use a 7-DoF Panda robotic arm from Franka Emika, with
a RealSense D435 attached to the end effector. Our algorithm was implemented in Python, using
PyTorch for neural network inference and ROS as the hardware interface. We use Open3D [35]
for TSDF fusion, and all experiments use TRAC-IK [36] for IK computations, and MoveIt [37] for
motion planning and are run on a same computer.

In our experiments, we evaluate the performance of our method and existing methods with the
following metrics. Success Rate (SR): the proportion of successful grasps. Failure Rate (FR): the
proportion of failed grasps. Abort Rate (AR): the proportion of cases where no valid grasp was
found even after the maximum number of views was reached. #Views: the average number of views
planned by the algorithm for each round. Time (only in real world experiments): the total time
consumed, including observation, planning, and execution.

We compare the performance of our algorithm with the following baselines: 1) initial-view: most
work in visual grasp detection considers a single viewpoint for grasp detection. In this baseline
the robot detects a grasp using only the initial view. 2) top-view: the robot detects grasps from a
single top-down image captured on the top of the workspace center, which is a typical setting for
tabletop robotic manipulation. 3) fixed-traj.: the robot captures 4 images by moving along a circular
trajectory centered on the target object, looking down at 30°, with uniform intervals. The images
are subsequently used for TSDF fusion and grasp detection. 4) GIGA: a simple next-best-view
policy based on GIGA [2], which uses the predicted best grasp direction as the next view direction.
5) Breyer’s: the state-of-the-art closed-loop next-best-view policy from [4], using the geometry-
based information gain approach to plan next-best-view for target object grasping. All baselines use
the same controller described above to generate the robot motion.
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5.1 Simulated Experiments

As shown in Fig. 4, in simulation environments, we generate simulation scenes in PyBullet [38] us-
ing the “packed” approach described in [1] and the object with the smallest amount of visible pixels
in initial view is selected as the grasping target. Table 1 shows the results of the 400 experiment
trials with each method in simulation environments.

We observe that the success rate of the initial-view method is the lowest since the strong occlusion
of the target object in the initial view leads to a difficult grasp affordance prediction. Top-view re-
sults in a high success rate because the target can always be grasped from the top in the generated
scenes, making it a simple and effective strategy to find feasible grasps. The success rate of the
fixed-traj. algorithm is higher than the initial-view as it collects more scene information from 4
predefined viewpoints. On the other hand, the state-of-the-art closed-loop next-best-view planning
method Breyer’s achieves superior grasping performance and it requires only a few new observa-
tions. Finally, compared to Breyer’s, our method achieves a comparable success rate with fewer new
observations and obtains a significant improvement on the success rate when only one new obser-
vation (2-Views SR) is allowed. This indicates that our model can find more informative views for
grasping the target object. Moreover, the qualitative results of next-best-view planning of our model
is shown in Fig. 4, and the examples verify the effectiveness next-best-view planning ability of our
proposed method.

To investigate the influence of different components within our model, we test two variants in Ta-
ble 1: (i) ours w/o feature Cgeo and Cray where the features Cgeo and Cray are replaced with
feature CGp of the grasp center, and (ii) ours w/o novel view synthesis branch that removes the
novel view depth synthesis in Sec. 4.2. We find that ours w/o features Cgeo and Cray results in
significantly worse grasp affordances prediction, and ours w/o novel view synthesis branch needs
more observation views to achieve a comparable performance. Moreover, the results of 2-View SR
suggests their importance in finding informative views.

Table 1: Results from the simulation experiments
Method SR FR AR #Views 2-Views SR

initial-view 71% 7% 22% 1.00 N/A
top-view 79% 6% 15% 1.00 N/A
fixed-traj. 77% 6% 17% 4.00 N/A
Breyer’s [4] 81% 8% 11% 4.31 77%

Our w/o feature Cgeo and Cray 74% 8% 18% 2.54 72%
Ours w/o novel view synthesis branch 80% 10% 10% 3.86 75%
Ours 83% 7% 10% 2.97 80%

Figure 4: The above images illustrate the next-best-view planning in two simulation scenes. Red and
blue pixels in the depth images represent randomly sampled grasp candidates, with red indicating
successful grasps and blue indicating unsuccessful grasps as predicted by the model.
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5.2 Real Robot Experiments
We test our model with a 7-DoF Panda robotic arm in real-world cluttered scenes shown in Fig. 1.
We initialize the robotic arm to a position where the target object is partially visible in the initial
view. Note that each scene is tested 5 times with small perturbations in the initial robotic arm
position and object locations.

The results from 5 grasping trials are reported in Table 2. Intuitively, the difficulty varies among
different scenarios. Some objects are heavily occluded, requiring the robot to find suitable directions
for observation. Additionally, some objects have unique shapes, limiting stable grasping pose to
specific directions. In the relatively easier scenes 4 and 5, our method outperforms the initial-view
and fixed-traj. baselines, while achieving a comparable grasping performance as the state-of-the-
art GIGA and Breyer’s method. Furthermore, our algorithm has advantages in much more difficult
scenes 1 and 2, where it finds a feasible grasp for the occluded target object with fewer additional
observations. For more results, please refer to the supplementary appendix and videos.

Table 2: Real-world experiments setup and results. The first column shows the arrangement of the scene, and
the second column displays the view from the initial position of the robotic arm. The target object has been
circled with a red dashed line. Our method is capable of achieving comparable grasp success rates (SR) using
fewer views (#Views).

Setup Initial Method SR FR AR #Views Time/s

top-down 0/5 3/5 2/5 1.0 18.3
fixed-traj. 3/5 2/5 0/5 4.0 29.4
GIGA [2] 3/5 1/5 1/5 5.4 32.1
Breyer’s [4] 4/5 0/5 1/5 4.8 24.7
Ours 3/5 2/5 0/5 3.4 23.1

top-down 1/5 2/5 2/5 1.0 18.0
fixed-traj. 3/5 1/5 1/5 4.0 30.5
GIGA [2] 4/5 1/5 0/5 3.6 31.8
Breyer’s [4] 3/5 0/5 2/5 5.2 25.9
Ours 4/5 1/5 0/5 3.0 22.2

top-down 2/5 2/5 1/5 1.0 16.5
fixed-traj. 4/5 1/5 0/5 4.0 29.8
GIGA [2] 4/5 0/5 1/5 3.8 30.2
Breyer’s [4] 3/5 2/5 0/5 4.8 23.0
Ours 5/5 0/5 0/5 3.2 24.7

top-down 0/5 0/5 5/5 1.0 19.1
fixed-traj. 2/5 3/5 0/5 4.0 30.5
GIGA [2] 3/5 1/5 1/5 5.0 28.6
Breyer’s [4] 2/5 1/5 2/5 4.4 23.2
Ours 3/5 2/5 0/5 2.8 23.7

top-down 3/5 2/5 0/5 1.0 15.3
fixed-traj. 4/5 1/5 0/5 4.0 29.7
GIGA [2] 4/5 1/5 0/5 1.8 23.5
Breyer’s [4] 4/5 1/5 0/5 3.0 21.7
Ours 5/5 0/5 0/5 2.6 20.8

6 Conclusion and Limitations
In this paper, we introduce a next-best-view planning framework that leverages the imagined grasp
affordances to plan the robotic arm’s new observation views for grasping a target object in occluded
environments. This framework is motivated by the idea that the grasp affordances can be well-
predicted when the observation direction is aligned with the grasping direction. Through both simu-
lated and real-world experiments, we demonstrate the effectiveness and robustness of our approach
compared to previous works.

Limitations: Our next-best-view planning framework involves neural network inference and re-
quires the sampling of multiple views, leading to a high computational cost. In addition, the robotic
arm motion planning is not considered in our method, and some unsatisfactory grasp executions
exist in real robot experiments. In the future, we plan to integrate motion planning into our method
to perform more complex tasks in more challenging environments.
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Appendix

A Pseudo Code of the Proposed ACE-NBV Policy
We summarize the overall NBV planning policy for grasping a target object in the following algo-
rithm 1. In the experiment, we set Tmax to 8 and qmax to 0.95.
Algorithm 1 Grasp Affordance Prediction and Next-Best-View Planning

Input: A cluttered scene, an occluded target object given its 3D bounding box Tbbox
Output: A feasible grasp G of the target object

for t ≤ Tmax do
Mt ← Dt ▷ Intergrate depth image into TSDF
Ct ← 3D CNN(Mt) ▷ Encode feature
if G∗

q(Tbbox,Ct,Ov,t) ≤ qmax then
Ov,t+1 ← argmaxGv∈Gv G

∗
q(Tbbox,Ct,Gv) ▷ Evaluate candidate next views

Move camera to Ov,t+1 ▷ Go to the next-best-view
else

Execute grasp G∗(Tbbox,Ct,Ov,t)
Break

end if
end for

B Network Architecture and Implementation Details
We adopt the same encoder as in GIGA that takes TSDF Mt ∈ R40×40×40 as input and outputs a
feature embedding for each voxel with a 3D CNN layer. Then, the tri-plane feature grids is con-
structed by projecting each input voxel on a canonical feature plane via orthographic projection.
Then, three feature planes are processed with a 2D U-Net that consists of a series of down-sampling
and up-sampling 2D convolution layers with skip connections. The output is formulated as the
shared tri-plane feature volume C ∈ R3×40×40×32, where 32 is the dimension of the feature embed-
ding.

Based on the shared tri-plane feature volume, the local feature Cp of a 3D point p = (x, y, z) is
obtained by projecting it to each feature plane and querying three features Cpx

,Cpy
,Cpz

at the
projected locations using bilinear interpolation, and the local feature Cp is the concatenated feature
of these queried features, i.e., Cp = concat(Cpx ,Cpy ,Cpz ). We implement our grasp affordance
prediction network with a five layer fully-connected network with residual connections. The input
dimension of this MLP network is 3 + 96 + 9 × 96 = 963 which is composed of view direction
unit vector v ∈ R3, the ray feature Cray ∈ R96, and the local geometry feature Cgeo ∈ R9×96. The
output dimension for grasp affordance prediction is 1 + 1 + 1 = 3 which includes the grasp quality
Gq , in-plane rotation Gr, and gripper width Gw.

As for the novel view depth synthesis, we employ a MLP network that takes the 3D point feature
Cp ∈ R96 as input and output the SDF value of this point, and adpot the same rendering technique
with NeuS to synthesize depth images (η = 12, γ = 5). We sample 128 rays in a depth image in
each batch, each ray consisting of 64 uniformly sampled points and extra 4 × 32 points following
the importance sampling rule. We set the near and far range close to the ground truth depth at
the beginning of training, and then gradually relax the range to the maximum range of the implicit
feature volume.

For experiments in simulation and real word, the size of cubic workspace L = 30cm. The size of the
cubic for Cvert is 0.25, which is 7.5cm in the real world. The points S = {s1, s2, ..., sn} for Cray is
uniformly sampled with a step of 0.1. The sizes of the three datasets front-observe-front-grasp, front-
observe-side-grasp and multi-observe-front-grasp are 1M, 1M and 2M grasps, respectively. Each
scene contains 240 grasps and η = 12 ground-truth depth images with the resolution of 480×640.
After data cleaning and balancing, there are about 40% data left. We separate the datasets randomly
into 90% training and 10% validation. We train the models with the Adam optimizer and a learning
rate of 2 × 10−4 and batch sizes of 128. All experiments are run on a computer equipped with an
Intel Core i9-13900K and a GeForce RTX 4090.
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C Extra Experiments for Intuition

We conducted extra experiments in simulation to justify our intuition that the grasp affordances
can be better-measured using the observation when the observation view direction is the same as
the grasp view. In each randomly selected case, the network receives a depth image from different
directions and is then required to predict a grasping pose of the target object in the same direction.
The results are quite evident: the prediction is much better when those two directions are the same.

(a) case 1

(b) case 2

(c) case 3

Figure 5: The network receives a TSDF fused from a depth image captured either from the front
(lower left) or the side (lower right) as input. It is required to predict grasp in the frontal direction,
which aligns with the direction of the depth image used for visualization in the upper row. The color
red indicates high-quality grasps, while blue represents low-quality ones.
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D Qualitative Results of Real Robot Experiments

We present qualitative results in Fig. 6 and 7 and recommend readers watch the supplementary video
for more comprehensive real robot experimental results. Note that our model can select reasonable
next-best-view to observe the occluded target object. We show a representative failure case in Fig. 7,
where small errors in grasp affordance prediction leads to an unsuccessful grasp. This small pre-
diction inaccuracy occurs in most failure experiments. Therefore, in the future, we plan to exploit a
better grasp affordance prediction module to improve the success rate of our method.

(a) Initial View (b) Selected Next-Best-View

(c) Execute Grasp (d) Grasp Success

Figure 6: Success Case. The robot planned one new view to observe the target box and successfully
grasped it.

(a) Initial View (b) Selected Next-Best-View

(c) Execute Grasp (d) Grasp Fail

Figure 7: Failure Case. The robot failed to predict accurate grasp affordances of the target object
after obtaining a new observation. As a result, the grasping failed.
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